Satellites As Infrastructure

Lets Make A Smarter Planet

National Security

TURKEY

ukbaymiyah

KUWAIT

JORDAN

SAUDI ARABIA

- Communications (Voice, Data, Television)
- Position, Navigation and Timing
- Early Warning, Tracking and Targeting
- Intelligence, Surveillance and Reconnaissance
- Technology, R&D, Experimentation
- Meteorological Observation

Caspian Sea

IRAN

Navigation

• Military technology which civilians can't live without

- Public safety dispatch
- Search and Rescue
- Air Traffic Control
- Telecommunications
- Transportation
- Increasing military uses
 - Precision Munitions
 - Cruise Missiles
 - Unmanned Aerial Vehicles

- Backbone of national TV, radio, and print media distribution
- Billions of data, credit, banking transactions daily
- Allows decentralized telecommunications and document storage
- Inventory management

GM

Broadcast Industry

- Newsgathering First choice for live coverage
- Program Delivery Primary feeds for network TV and radio broadcasts

Internal Security

- Lifeline for emergency workers and military planners
- **Reliance on satellite phones and satellite trucks**
- Enable data telemetry
- Primary information source

Search & Rescue

- Global Maritime Distress and Safety System
- Medical emergencies, crew overboard and air evacuations
- Vessel fires, mechanical failures
- Piracy and coordination of law enforcement

Remote Sensing

- Provides high-resolution images
 - Natural resource monitoring
 - Urban planning
 - Crop assessments
 - Insurance and risk management
 - Oil and gas exploration
 - Mapping
 - Disaster/emergency response
- Sub Meter commercial imagery

Growth Trend

Growth Trend

- Continued overall growth in commercial space industry
- World commercial space revenues ranges at \$250 billion
 - Declining commercial launch costs
- Increased commercial access to space
- GEO launch costs have declined to about \$25000 /Kg
- Government subsidies
- National security concerns

Global Positioning System

The Global Positioning System

- 24 satellite constellation in medium earth orbit
 - 31 satellites currently available
- Anytime, any where , all weather
- Precise time and orbit information
- Two types of service:
 - Standard (No user fees)
 - Precise (U.S. and NATO)
- Owned and operated by U.S. Govt

- No direct user fees for civil GPS services
- Open access for development of applications
 - Anyone can develop applications, equipment, and VAS
 - Encourages market-driven competition
- Global compatibility with other GNSS
- Protection from disruption and interference

New GPS Capabilities

- Three new civil GPS signals in the form of L2C, L5,
 L1C (in addition to existing L1 C/A)
- New GPS capabilities will drive user equipment upgrades
- New signal designs will spur new applications

New Civil GPS Capabilities (L2C)

Benefits existing professional receivers

- Designed to meet commercial needs
 - Higher accuracy via ionospheric correction
 - Required upgrades will drive equipment sales
- User productivity benefits
- Currently available on 7 operational satellites
 On 24 satellites by 2016

New Civil GPS Capabilities (L5)

- Designed for transport safety
 - Uses highly protected Aeronautical Radio navigation Service (ARNS) band
 - Dual-frequency equipment for aircraft and other vehicles
- **Commercial innovation**
 - Sub-meter, standalone positioning
- Opportunity for international interoperability
- Demo signal activated in April 2009
 - GPS satellites with L5 began launching in June 2010
 - 24 satellites by 2018

New Civil GPS Capabilities (L1C)

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Launches with GPS III in 2014
 On 24 satellites by ~2021

Under trees

Inside cities

Integration of GPS with Other PNT Capabilities

- Growing dependence on GPS for critical applications creates potential vulnerabilities
 - GPS signal is susceptible to interference
- Integration of GPS technology with complementary or backup capabilities has begun
 - Cell-based positioning
 - WiFi hotspot location
 - Digital compasses, accelerometers, inertial sensors, etc.
- As users recognize limitations of GPS, demand for integrated PNT capabilities may increase

GLONASS

• The Russian GLONASS consists of a constellation of 24 (21 active and 3 spare) KOSMOS satellites

• The KOSMOS satellites orbit every 11 hours and 15 minutes on three orbital planes separated by 120

• Life expectancy - 3-5 years

Next gen satellites life expectancy - 10 years

• All ground based stations located within former Soviet Union territory 20

GALILEO

GALILEO

- The European Union Galileo consists of 30 satellites (27 active and 3 spare)
- The satellites orbit every 14 hours on three orbital planes angled at 56°
- Life expectancy not determined as yet
- Ground based stations located throughout Europe

Military Applications

Military Applications of GPS

- Navigation
 - To find objectives in the dark or in unfamiliar territory
 - To coordinate the movement of troops and supplies
 - Target Tracking
 - To track potential ground and air targets before they are flagged as hostile.
 - To guide munitions to engage the targets accurately
 - Military aircraft, particularly those used in air-to-ground roles
- Bomb and Missile guidance
 - Accurate targeting for ICBMs, cruise missiles and precisionguided munitions
 - Artillery projectiles with embedded GPS receivers

Military Applications of GPS

- Search and Rescue
- Facility Management
 - To operate large bases which cover extensive areas.
 - To prepare an accurate base map. GPS with Geographic GIS can effectively tackle this task.
- Map Creation
 - To aid mapping and reconnaissance.

Challenges & Opportunities for GNSS

Challenges & Opportunities

- LOCO GPSI
- Web-enabled Location Based Services
- Mobile AR Visualisation
- Assisted GPS
- Geoslavery
- Mobile Robot Way Point Navigation
- Indoor Tracking

Indian Efforts

Indian Efforts

- GPS Aided Geo Augmented Navigation(GAGAN)
 - SBAS
 - Provides reference signals to improve accuracy
- IRNSS
 - 7 satellites
 - 2000km around India
 - Position Accuracy 10m

International Cooperation

International Cooperation

- Positive results in the offing
 - New satellite constellations and regional augmentation systems are designed to be interoperable
 - Coordination mechanisms are being created to promote interoperability, promote GNSS use

GPS-Galileo Cooperation

- In 2004, US and EU signed landmark agreement on GPS-Galileo cooperation
 - Recognizes importance of compatibility/interoperability
 - Agreed to spectrally separate signals for military and civilian services
 - Agreed to implement a common, open, civil signal on both Galileo and GPS III
- Working Groups established to continue dialogue
 - Compatibility & Interoperability
 - Trade & Civil Applications
 - Next-Generation GNSS
 - Security Issues

June 26, 2004, press conference at U.S.-EU Summit in Ireland (U.S. Sec. of State Colin Powell, Irish Foreign Minister Brian Cowen, EU Vice-President Loyola De Palacio) 38

GPS-GLONASS Cooperation

 Working groups are pursuing GPS-GLONASS interoperability

• Enhanced PNT availability through common open service civil signals

Cooperative search and rescue capabilities

Asia Pacific Regional Concerns

- Japan's QZSS and Australia's GRAS are of interest
- Australia employs GIS for ATM, agriculture, and mining; it aspires to share its expertise with others in the Asia-Pacific region
- China has full constellation of navigation satellites, COMPASS
- APEC economies beyond transportation into infrastructure, social, and economy improvements

US-India Cooperation

 Policy and technical consultations have been held since 2005

 US-India Joint Statement on GNSS Cooperation issued in February 2007 in Washington

Aims to ensure interoperability

India's GAGAN augmentation system based on GPS

Ionosperic distortion reduction solutions

Conclusion

Lt Col Saravanan G MCEME Secunderabad